
GRAPH COVERINGS AND HARMONIC MAPS IN
EXERCISES

ALEXANDER MEDNYKH AND ILYA MEDNYKH

Abstract. The aim of notes is to give a background for the theory
of graph coverings and harmonic maps. The basic definitions and
main results of the theory are followed by exercises. Some of these
excises are elementary, some of them will require non-trivial effort
and some of them are unsolved problems. Also, the basic theory
will be provided by numerous examples and the most exercises by
solutions.

1. Graph coverings and covering groups

1.1. Graph coverings and covering groups. Let X and Y be con-
nected graphs. A surjective morphism ϕ : X → Y is called a (graph)
covering if for any vertex x ∈ V (X) the restriction ϕ|StX(x)

: StX(x)→
StY (ϕ(x)) is an isomorphism. A covering group of ϕ is defined as

Cov(ϕ) = {h ∈ Aut (X) : ϕ = ϕ ◦ h}.
The covering ϕ is called regular if Cov(ϕ) act transitively on each fibre
of ϕ and irregular othetwise. If ϕ : X → Y is a regular covering then
Y ∼= X/Cov(ϕ). A finite sheeted covering ϕ : X → Y is regular if and
only if the order of covering group |Cov(ϕ)| coincides with the number
of sheets of the covering.

If ϕ : X → Y is a covering and ϕ(x) = y then there is a nat-
ural imbedding of the fundamental groups ϕ∗ : π1(X, x) → π1(Y, y)
induced by ϕ. Moreover, the index of subgroup ϕ∗π1(X, x) in π1(Y, y)
coincides with the number of sheets of the covering. The covering ϕ is
regular if and only if ϕ∗π1(X, x) is a normal subgroup in π1(Y, y). In
the latter case, Cov(ϕ) is canonnically isomorphic to the factor-group
π1(Y, y)/ϕ∗π1(X, x).

The coverings ϕ : X → Y and ϕ′ : X ′ → Y are said to be equivalent
if there is an isomorphism h : X → X ′ such that ϕ = ϕ′ ◦ h. The
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coverings ϕ : X → Y and ϕ′ : X ′ → Y are equivalent if and only if the
corresponding subgroups ϕ∗π1(X, x) and ϕ′∗π1(X

′, x′) are conjugate in
π1(Y, y).

1.1.1. Coverings and transitive homomorphisms. Let Γ = π1(X, x) be
the fundamental group of a graph X at vertex x. It is well known that
there is a one-to-one correspondence between the classes of equivalent
n-fold coverings of X and the equivalence classes of transitive homo-
morphisms from Γ to the symmetric group Sn on n symbols. Recall
that a homomorphism to Sn is called transitive if its image is a tran-
sitive subgroup in Sn. Two homomorphisms, θ, θ′ : Γ→ Sn are said to
be equivalent if there exists h ∈ Sn such that θ′ = h θ h−1. [A. Hatcher,
Algebraic Topology, Cambridge Univ. Press, Cambridge, 2002, p. 68].

Let X be a graph of genus g. Then Γ is a free group of rank g. Sup-
pose that Γ is freely generated by the elements x1, x2, . . . , xg. Then an
arbitrary transitive homomorphism θ : Γ→ Sn is uniquely determined
by the following conditions:

(i) θ(xi) = ξi, where ξi ∈ Sn for i = 1, 2, . . . , g.
(ii) ξ1, ξ2, . . . , ξg generate a transitive subgroup in Sn.
Two homomorphisms defined by tuples (ξ1, ξ2, . . . , ξg) and (ξ′1, ξ

′
2, . . . , ξ

′
g)

are equivalent if and only if exists h ∈ Sn such that ξ′i = h ξi h
−1 for all

i = 1, 2, . . . , g.

1.1.2. Graph coverings and voltage assignments. Permutation voltage
assignments were introduced by Gross and Tucker [9]. Let X be a
finite connected graph, possibly including multiple edges or loops. It
is directed if each edge (even a loop) is provided by the two possible
directions. Let D(X) be the set of the directed edges of X (also known
as darts, arcs and so on in the literature). A permutation voltage as-
signment of X with voltages in the symmetric group Sn of degree n is
a function φ : D(X)→ Sn such that inverse edges have inverse assign-
ments. The pair (D(X), φ) is called a permutation voltage graph. The
(permutation) derived graph Xφ derived from a permutation voltage
assignment φ is defined as follows:

V (Xφ) = V (X)× {1, · · · , n}, and ((u, j), (v, k)) ∈ D(Gφ)

if and only if (u, v) ∈ D(G) and k = φ(u, v)(j). The natural projection
π : Xφ → X that is a function from V (Xφ) onto V (X) which erases the
second coordinates gives a graph covering. Gross and Tucker [9] showed
that every covering of a given graph arises from some permutation
voltage assignment in a symmetric group. Moreover, such a covering
is connected if and only if φ(D(X)) is a transitive subgroup in Sn.
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1.1.3. Regular coverings and ordinary voltage assignments. Ordinary
voltage assignments were introduced by Gross [8]. Let G be a finite
group. Then a mapping ω : D(X) → G is called an ordinary voltage
assignment if ω(v, u) = ω(u, v)−1 for each (u, v) ∈ D(X). The (ordi-
nary) derived graph Xω derived from an ordinary voltage assignment ω
is defined as follows: V (Xω) = V (X)×G , and ((u, j), (v, k)) ∈ D(Xω)
if and only if (u, v) ∈ D(X) and k = ω(u, v)j. Consider the natural
projection π : Xω → X that is a function from V (Xω) onto V (X)
which erases the second coordinates. Then the map π : Xω → X is
a G-covering of X, that is a |G|-fold regular covering of X with the
covering group G. Every regular covering of X can be obtained in such
a way (see [9]).

1.1.4. Reduced voltage assignments. Let ω be an ordinary or a permu-
tation voltage assignment on X. Choose a spanning tree T and a vertex
v in X. For any edge e which is not in T there is an oriented closed
walk we in X, based at v, with the following properties:

(a) we − e ⊆ T ;
(b) the orientation of we agrees with that of e;
(c) we has the minimum length among all walks satisfying (a) and

(b).

Putting ω′(e) = ω(we), if e is not in T, and ω′(e) = 1 otherwise, we
obtain a new voltage assignment ω′ called the (T, v)-reduction of ω.

Ezell’s Theorem 4.1 in [12] implies that ω and ω′ generate equivalent
coverings.

Also, by Theorem 2 in [16] two ordinary voltage assignments ψ :
D(X) → G and ω : D(X) → G produce equivalent coverings if and
only if their (T, v)-reductions ψ′ and ω′ are differ by an automorphism
A of the group G such that A ◦ ψ′ = ω′.

To obtain an analogue theorem for permutation voltage assignments,
one has to replace the word “automorphism” by “inner automorphism”
and “group G” by “symmetric group Sn”.

1.1.5. Short way to construct coverings. Let X be a graph of genus g.
Choose a spanning tree T in X and g directed edges e1, e2, . . . , eg from
the compliment X \ T.

Using reduced permutation assignment. An arbitrary reduced
permutation assignment ψ : D(X)→ Sn is uniquely determined by the
following conditions:

(i) ψ(ei) = ξi, where ξi ∈ Sn for i = 1, 2, . . . , g and ψ(e) = 1, for
any edge e which is in T ;

(ii) ξ1, ξ2, . . . , ξg generate a transitive subgroup in Sn.
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Then the permutation derived graph gives a required covering.
By (??) all connected n-fold coverings can be obtained in such a way.

Two tuples (ξ1, ξ2, . . . , ξg) and (ξ′1, ξ
′
2, . . . , ξ

′
g) give equivalent coverings

if and only if exists h ∈ Sn such that ξ′i = h ξi h
−1 for all i = 1, 2, . . . , g.

Using reduced ordinary assignment. An arbitrary reduced ordi-
nary assignment ω : D(X)→ G is uniquely determined by the following
conditions:

(i) ω(ei) = ai, where ai ∈ G for i = 1, 2, . . . , g and ω(e) = 1, for any
edge e which is in T ;

(ii) a1, a2, . . . , ag generate group in G.

Then the ordinary derived graph gives a required G-covering.
By (??) all regular coverings can be obtained in such a way. Two

tuples (a1, a2, . . . , ag) and (a′1, a
′
2, . . . , a

′
g) give equivalent G-coverings

if and only if exists A of the group G such that a′i = A(ai) for all
i = 1, 2, . . . , g.
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1.2. Exercises.

1.2.1. Draw all 2-fold coverings of the figure-eight graph. Show that
all of them are regular.

1.2.2. Draw all 3-fold coverings of the figure-eight graph. How many
of them are regular?

1.2.3. Show that composition ψ ◦ ϕ of two coverings ϕ : X → Y
and ψ : Y → Z is a covering.

1.2.4. Let X be a connected graph and X is not a tree. Then G
has infinitely many non-equivalent coverings.

1.2.5. Let X be a tree. Then up to equivalency X admits only
one covering. Namely, the trivial covering id : X → X. What about
automorphisms of X? Are they also coverings?

1.2.6. Construct universal coverings for the following graphs:

(i) A loop (one vertex and one edge graph),
(ii) The figure eight graph,
(iii) Cyclic graph Cn.

1.2.7. Show that two cyclic graphs Cm and Cn share a finite sheeted
covering.

1.2.8. Describe all coverings of a cyclic graph Cn.

1.2.9. Let ϕ : X → Y be a graph covering and Y is a tree. Then X
is isomorphic to Y.

1.2.10. Let Y be a bipartite graph and ϕ : X → Y is a graph
covering. Show that X is also a bipartite graph.

1.2.11. Let Y be a k-partite graph and ϕ : X → Y is a graph
covering. Then X is also k-partite.

1.2.12. Let ϕ : X → Y and ψ : Y → Z be regular graph coverings.
Is it true that ψ ◦ ϕ : X → Z is also regular graph covering?

1.2.13. Let ϕ : X → Y be an irregular graph covering. Prove
that there exixst a regular graph covering ψ : Z → X such that the
composition ϕ ◦ ψ : Z → Y is also regular.
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1.2.14. A regular covering ϕ : X → Y is called Cn-covering if the
covering group of ϕ is isomorphic to cyclic group Cn of order n. Find
the number of non-equivalent Cn-coverings of a given graph X of genus
g. (Ph. Hall (1988), G. Jones (1975), A. D. Mednykh (1978))

Answer: #Cn-coverings =
∑
d|n
µ(n

d
)dg. This function is called Jordan

g-function.

1.2.15. A covering ϕ : X → Y is called Dn-covering if the covering
group of ϕ is isomorphic to dihedral group Dn of order 2n. Find the
number of non-equivalent Dn-coverings of a given graph X of genus g.

1.2.16. An n-fold covering ϕ : X → Y is called n-dihedral if there
is a Dn-covering ψ : Z → Y such that Z/C2 is isomorphic to X, D/Dn

is isomorphic to Y and ϕ : X ∼= Z/C2 → Y ∼= Z/Dn coincides with the
covering induced by the group inclusion C2 < Dn. Find the number of
non-equivalent n-dihedral covering of a graph Y of genus g.

Answer: unknown yet.

1.2.17. Find the number of non-equivalent n-fold bipartite coverings
of a graph X of genus g. (Kwak, Lee, ...)

1.2.18. Let X and Y be graphs of genera g and h respectively
(g > h > 1). Find an upper bound for the number of non-equivalent
coverings ϕ : X → Y.

Answer: unknown yet.

1.2.19. Two coverings ϕ : X → Y and ψ : X → Y are isomorphic if
there are automorphisms α : Y → Y, β : X → X such that α◦ϕ = ψ◦β.
For given graphs X and Y of genera g and h respectively (g > h > 1)
find an upper bound for the number of non-isomorphic coverings ϕ :
X → Y.

Answer: unknown yet.

2. Spanning trees and Laplacians

2.1. Laplacian matrix and Laplacian spectrum. The Laplacian
matrix of a graph and its eigenvalues can be used in several areas of
mathematical research and have a physical interpretation in various
physical and chemical theories. The related matrix the adjacency
matrix of a graph and its eigenvalues were much more investigated in
the past than the Laplacian matrix. In the same time, the Laplacian
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spectrum is much more natural and more important than the adjacency
matrix spectrum because of it numerous application in mathematical
physics, chemistry and financial mathematics.

The graphs in this section are unoriented, but they may have loops
and multiple edges. We also allow weighted graphs which are viewed
as a graph which has for each pair u, v of vertices, assigned a certain
weight auv. The weights are usually real numbers and they must satisfy
the following conditions:

(i) auv = avu, v, u ∈ V (G),
(ii) avu 6= 0, if and only if v and u are adjacent in G.
(iii) auv ≥ 0, v, u ∈ V (G).

Unweighted graphs can be viewed as a special case of weighted
graphs, by specifying, for each u, v ∈ V (G), the weight auv to be equal
to the number of edges between u and v. The matrix A = A(G) =
[auv]u,v∈V (G), is called the adjacency matrix of the graph G.

Let d(v) denote the degree of v ∈ V (G), d(v) =
∑

u auv, and let D =
D(G) be the diagonal matrix indexed by V (G) and with dvv = d(v).
The matrix L = L(G) = D(G) − A(G) is called the Laplacian matrix
of G. It should be noted that loops have no influence on L(G). The
matrix L(G) is sometimes called the Kirchhoff matrix of G due to its
role in the well-known Matrix-Tree Theorem (cf, exercise 4.44) which
is usually attributed to Kirchhoff.

Throughout the paper we shall denote by µ(G, x) the characteristic
polynomial of L(G). Its roots will be called the Laplacian eigenvalues
(or sometimes just eigenvalues) of G. They will be denoted by µ1(G) ≤
µ2(G) ≤ . . . ≤ µn(G), (n = |V (G)|), always enumerated in increasing
order and repeated according to their multiplicity.

2.1.1. Spectrum of some graphs.
1◦. The complete graph. The Laplace spectrum of the complete
graph Kn on n vertices is 01, nn−1.

2◦. The complete bipartite graph. The Laplace spectrum of the
complete bipartite graph Km,n is 01, mn−1, nm−1, (m+ n)1.

3◦. The cycle graph. The Laplace spectrum of the n-cycle graph Cn
consists of the numbers 2− 2 cos(2πj/n), (j = 0, . . . , n− 1).

4◦. The path graph. The Laplace spectrum of the path graph Pn with
n vertices consists of the numbers 2− 2 cos(πj/n), (j = 0, . . . , n− 1).
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2.1.2. Further properties of the Laplacian spectrum.

Fiedler [F1] derived the following result about the Cartesian products
of graphs.

Theorem 1. The Laplacian eigenvalues of the Cartesian product X1×
X2 of graphs X1 and X2 are equal to all the possible sums of eigenvalues
of the two factors:

λi(X1) + λj(X2), i = 1, . . . , |V (X1)|, j = 1, . . . , |V (X2)|.

By applying Theorem 1 we can easily determine the spectrum of
lattice graphs. The m × n lattice graph is just the Cartesian product
of paths, Pm × Pn. The spectrum of Pk is [AnM]

l
(k)
i = 4 sin2 πi

2k
, i = 0, 1, . . . , k − 1.

So Pm × Pn has eigenvalues

λi, j = l
(m)
i + l

(n)
j = 4 sin2 πi

2m
+4 sin2 πj

2n
, i = 0, 1, . . . ,m−1, j = 0, 1, . . . , n−1.

Corollary 1. [Kel’mans] Let X1 ∗ X2 denote the join of X1 and X2,
i.e. the graph obtained from the disjoint union of X1 and X2 by adding
all possible edges uv, u ∈ V (X1), v ∈ V (X2). Then

µ(X1 ∗X2, x) =
x(x− n1 − n2)

(x− n1)(x− n2)
µ(X1, x− n2)µ(X2, x− n1).

where n1 and n2 are orders of X1 and X2, respectively and µ(X, x) is
the characteristic polynomial of the Kirchhoff matrix of X.

A generalization of the Matrix-Tree-Theorem was obtained by Kel-
mans [K3] who gave a combinatorial interpretation to all the coefficients
of µ(X, x) in terms of the numbers of certain subforests of the graph.
This result has been obtained even in greater generality (for weighted
graphs) by Fiedler and Sedlác̆ek [FS].

Theorem 2. [FS, K3] If µ(X, x) = xn + c1x
n−1 + . . .+ cn−1x then

ci = (−1)i
∑

S⊂V, |S|=n−i

t(XS),

where t(H) is the number of spanning trees of H, and XS is obtained
from X by identifying all points of S to a single point.
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2.2. Some properties of Chebyshev polynimials.
The Chebyshev polynimial of the first kind is defined by the formula

Tn(x) = cos(n arccosx).

Eqivalently,

Tn(x) =
(x+

√
x2 − 1)n + (x−

√
x2 − 1)n

2
.

Also, Tn(x) satisfies the recursive relation

T0(x) = 1, T1(x) = x, Tn(x) = 2x · Tn−1(x)− Tn−2(x) = 1, n ≥ 2.

The Chebyshev polynimial of the second kind is defined by the formula

Un(x) =
sin((n+ 1) arccosx)

sin(arccosx)
.

Eqivalently,

Un(x) =
(x+

√
x2 − 1)n+1 − (x−

√
x2 − 1)n+1

2
√
x2 − 1

.

Also, Un(x) satisfies the recursive relation

U0(x) = 1, U1(x) = 2x, Un(x) = 2x · Un−1(x)− Un−2(x) = 1, n ≥ 2.

We have Un(cos kπ
n+1

) = 0, k = 1, 2, . . . , n. Hence

Un(x) = 2n
n∏
k=1

(x− cos
kπ

n+ 1
).

Since

Un(x) = (−1)nUn(−x) = 2n
n∏
k=1

(x+ cos
kπ

n+ 1
)

we obtain

U2
n(x) =

n∏
k=1

(4x2 − 4 cos2
kπ

n+ 1
).

Polynomials Tn(x) and Un−1(x) are related by the following identity

T 2
n(x) + (x2 − 1)U2

n−1(x) = 1.

2.3. Spanning trees.



10 ALEXANDER MEDNYKH AND ILYA MEDNYKH

2.3.1. A spanning tree T of a connected, undirected graph G is a tree
composed of all the vertices and some (or perhaps all) of the edges of
G. In other words, a spanning tree of G is a selection of edges of G
that form a tree spanning every vertex. That is, every vertex lies in
the tree, but no cycles (or loops) are formed. On the other hand, every
bridge of G must belong to T. A spanning tree of a connected graph
G can also be defined as a maximal set of edges of G that contains no
cycle, or as a minimal set of edges that connect all vertices.

2.3.2. Counting spanning trees. The number t(G) of spanning trees of a
connected graph is a well-studied invariant. In some cases, it is easy to
calculate t(G) directly. For example, if G is itself a tree, then t(G) = 1,
while if G is the cycle graph Cn with n vertices, then t(G) = n. For any
graph G, the number t(G) can be calculated using Kirchhoff’s matrix-
tree theorem.

Cayley’s formula for the number of spanning trees in the complete
graph Kn with n vertices states that t(Kn) = nn−2. If G is the complete
bipartite graph Km,n, then t(G) = mn−1nm−1, while if G is the n-

dimensional hypercube graph Qn, then t(G) = 22n−n−1
n∏
k=2

k(n
k). These

formulae are also consequences of the matrix-tree theorem.

2.4. Exersises.

2.1.1. Draw all spanning trees for graph K4.

2.1.2. Find set of spanning trees for the cube and for the octahedral
graph. Is there a natural one-to-one correspondence between these two
sets?

2.1.3. Find the number tn of spanning trees for the following graphs

(i) Path graph Pn,
(ii) Cyclic graph Cn,

(iii) Complete graph Kn,
(iv) Ladder graph Ln = P2 × Pn,
(v) Fan graph Fn = Pn +K1.

2.1.4. Find the number of spanning trees of a graph G through the
spectrum of the Laplacian of G.

2.1.5. Simplify the above formula for k-regular graphs.

2.1.6. Find t(Ġ), where Ġ is the join of a graph G and a point
graph.
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2.1.7. Let ϕ : G→ H be a graph covering. Prove that t(H)|t(G).

2.1.8. Find the number of spanning trees for the direct product of
graphs G and H. There are four definition of direct product of graphs.
The spectrums of G and H are known.

2.1.9. Find the number of spanning trees for

(i) Ladder P2 × Pn,
(ii) Rectangular Pn × Pm,
(iii) Cube P2 × P2 × P2,
(iv) Parallelepiped Pk × Pl × Pm,
(v) Torus Cn × Cm.

2.1.10. Find the number of spanning trees t(Wn) for the wheel graph
Wn = Cn +K1.

2.1.11. For any graph X we denote by t(X) the total number
of spanning trees of X. Let A = A(X) denote the adjacency ma-
trix of X and D be the diagonal matrix of degrees of X. Then the
Kirchhoff matrix is defined as H = D − A.

Prove the celebrated Kirchhoff Matrix Tree Theorem [??]: All co-
factors of H are equal to t(X).

2.1.12. Let 0 = µ1 ≤ µ2 ≤ · · · ≤ µn denote the eigenvalues of
the Kirchhoff matrix H of a n point graph. Prove the following result
obtained by by Kel’mans and Chelnokov [KelChel]:

t(X) =
1

n

n∏
k=2

µk.

2.1.13. Prove the following Temperley’s formula [Temp]

t(X) =
1

n2
det(H + J),

where J is the n× n matrix all of whose elements are unity.

2.1.14. Let X be a regular graph of degree r. Then [Sachs]

t(X) =
1

n

n∏
k=2

(r − λk),

where λn ≤ · · · ≤ λ2 ≤ λ1 = r the eigenvalues of the adjacency matrix
A.
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2.1.15. Let e an edge of a graph X. Show that the number of
spanning trees of X which contain e is t(X/e), where t(X/e) denotes
the graph obtained by coalescing the endpoints of the edge e. Show
the result, which is apparently due to Feussner [Feu] (see also Moon
[Moon])

t(X) = t(X − e) + t(X/e).

2.1.16. Let Xs denotes the graph that results from subdividing an
edge e of a graph X. Then

t(Xs) = t(X/e) + 2t(X − e) = t(X) + t(X − e).

2.1.17. Let Xp denotes the results of adding an edge in parallel an
edge e of a graph X. Then

t(Xp) = t(X) + t(X/e).

2.1.17*. Let X be a finite connected graph. Suppose that there is
an edge e of X such that the complement X\e consists of two connected
graphs X1 and X2. Prove that

t(X) = t(X1) t(X2).

2.1.18. Prove that the number of spanning trees for the prism P2×
Cn is given by the formula

t(P2 × Cn) =
n

2
((2 +

√
3)n + (2−

√
3)n − 2).

2.1.19. Prove that the number of spanning trees for the Moebius
ladder Mn is given by the formula

t(Mn) =
n

2
((2 +

√
3)n + (2−

√
3)n + 2).

2.1.20. Prove the following result obtained by Boesch and Prodinger
[BoProd]: the number of spanning trees for the complete prism Km×Cn
is given by the formula

t(Km × Cn) =
n

m
2m−1

[
(Tn(1 +

m

2
)− 1)

]m−1
,

where Tn(x) = cos(n arccosx) is the Chebyshev polynomial of the first
kind.
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2.1.20*. Prove that the number of spanning trees for the lattice
graph Lm,n = Km ×Kn is given by the formula

t(Lm,n) = mm−1nn−1(m+ n)m+n−1.

2.1.21. Let X be a graph on m vertices with the Laplacian eigen-
values 0 = µ1(X) ≤ µ2(X) ≤ · · · ≤ µm(X). Then [Chen Xiebin]

t(X × Pn) = t(X)
m∏
i=2

Un−1(1 +
µi(X)

2
),

where Un−1(x) = sin(n arccosx)/ sin(arccosx) is the Chebyshev poly-
nomial of the second kind.

2.1.22. Let X be a graph on m vertices with the Laplacian eigen-
values 0 = µ1(X) ≤ µ1(X) ≤ · · · ≤ µm(X). Then [Chen Xiebin]

t(X × Cn) = n t(X)
m∏
i=1

U2
n−1(

1

2

√
4 + µi(X)).

2.1.23. Prove the following identities [Chen Xiebin]:

(i) t(Pm × Pn) =
m−1∏
k=1

Un−1(2− cos kπ
m

);

(ii) t(Cm × Pn) =
m−1∏
k=1

Un−1(2− cos 2kπ
m

);

(iii) t(Cm × Cn) = mn
m−1∏
k=1

U2
n−1(

1
2

√
6− 2 cos 2kπ

m
).

2.5. Solutions.

2.1.11.– 2.1.13. Let L be the Kirchhoff-Laplace matrix with eigen-
values 0 = µ1 ≤ µ2 ≤ . . . ≤ µn. Let lxy be the (x, y)-cofactor of L. (The
(i, j)-cofactor of a matrix M is by definition (−1)i+j detM(i, j), where
M(i, j) is the matrix obtained from M by deleting row i and column
j. Note that lxy does not depend on an ordering of the vertices of X.)

We set N = t(X) and show that

N = lxy = det(L+
1

n
J) =

1

n
µ2 . . . µn for any x, y ∈ V (X).

Let LS, for S ⊂ V (X), denote the matrix obtained from L by deleting
the rows and columns indexed by S, so that lxx = detL{x}. The equality
N = lxx follows by induction on n, and for fixed n > 1 on the number
of edges incident with x. Indeed, if n = 1 then lxx = 1. Otherwise, if x
has degree 0, then lxx = 0 since L{x} has zero row sums. Finally, if xy
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is an edge, then deleting this edge from X diminishes lxx by detL{x,y},
which by induction is the number of spanning trees of X with edge xy
contracted, which is the number of spanning trees containing the edge
xy. This shows N = lxx.

Now µ(X, t) = det(tI − L) = t
n∏
i=2

(t − µi) and (−1)n−1µ2 . . . µn is

the coefficient of t, that is, is d
dt

det(tI − L)|t=0. But d
dt

det(tI − L) =∑
x

det(tI − L{x}), so µ2 . . . µn =
∑
x

lxx = nN.

Since the sum of the columns of L is zero, so that one column is minus
the sum of the other columns, we have lxx = lxy for any x, y. Finally, the
eigenvalues of L+ 1

n
J are 1

n
and µ2, . . . , µn, so det(L+ 1

n
J) = 1

n
µ2 . . . µn.

Example 1. The multigraph of valency k on two vertices has Laplace
matrix L = {{k,−k}, {−k, k}} so µ1 = 0, µ2 = 2k, and N = 1 ·2k = k.

Example 2. Consider the complete graph Kn, then µ2 = . . . = µn = n,
and therefore Kn has N = nn−2 spanning trees. This formula is due to
Cayley [Cayley].

2.1.14. A graph X is called regular of degree (or valency) r when
every vertex has precisely r neighbors. So, X is regular of degree
r precisely when its adjacency matrix A has row sums r, i.e., when
A1 = r1 (or AJ = rJ). If X is regular of degree r, then for every
eigenvalue λ we have |λ| ≤ r. (One way to see this is by observing that
if |t| > r then the matrix tI − A is strictly diagonally dominant, and
hence nonsingular, so that t is not an eigenvalue of A.) If X is regular of
degree r, then L = rI−A. It follows that if X has ordinary eigenvalues
r = λ1 ≥ . . . ≥ λn and Laplace eigenvalues 0 = µ1 ≤ µ2 ≤ . . . ≤ µn,
then µi = r − λi for i = 1, . . . , n and by the previous solution t(X) =
1
n
µ2 . . . µn = 1

n
(r − λ2) . . . (r − λn).

2.1.20. The Laplace spectrum of the complete graph Km with m
vertices is µ0 = 0, µi = m, i = 1, . . . , m − 1. The graph Cn is regular
of valency 2, so its Laplace spectrum consists of the numbers λj =
λj(Cn) = 2− 2 cos(2πj/n), j = 0, . . . , n− 1.

t(Km×Cn) = 1
mn

m−1∏
i=0

n−1∏
j=0

(µi+λj), where i+j > 0 = 1
mn

n−1∏
j=1

λj
m−1∏
i=1

µi
m−1∏
i=1

n−1∏
j=1

(λj+

µi) = t(Cn)t(Km)
m−1∏
i=1

n−1∏
j=1

(m+2−2 cos(2πj/n)) = nmm−2(
n−1∏
j=1

(m+4−

4 cos(πj/n)2))m−1 = nmm−2
[
U2
m−1(

√
m+4
4

)
]m−1

.
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Then the result follows from the identities

U2
m−1(x) =

1

2(1− x2)
(1− T2m(x)) =

1

2(1− x2)
(1− Tm(2x2 − 1)).

2.1.20*. The Laplace spectrums of the graphs Km and Kn are
µ0 = 0, µi = m, i = 1, . . . , m − 1 and λ0 = 0, λj = n, j = 1, . . . , n −

1. Then t(Km × Kn) = 1
mn

m−1∏
i=0

n−1∏
j=0

(µi + λj), where i + j > 0 =

1
mn

n−1∏
j=1

λj
m−1∏
i=1

µi
m−1∏
i=1

n−1∏
j=1

(λj + µi) = mm−2nn−2(m+ n)m+n−2.

2.1.21. The Laplace spectrum of the path graph Pn with n vertices
is 2− 2 cos(πj/n), j = 0, 1, . . . , n− 1. Hence

t(X×Pn) = 1
mn

m∏
i=1

n−1∏
j=0

(µi(X)+2−2 cos(πj/n)), where i+j > 1 =

1
mn

m∏
i=2

µi(X)
n−1∏
j=1

(2 − 2 cos(πj/n))
m−1∏
i=1

n−1∏
j=1

(µi(X) + 2 − 2 cos(πj/n)) =

t(X)t(Pn)
m−1∏
i=1

n−1∏
j=1

(µi(X)+2−2 cos(πj/n)) = t(X)
m−1∏
i=1

Un−1(1+ µi(X)
2

).

2.1.22. The Laplace spectrum of the circle graph Cn with n vertices
is 2− 2 cos(2πj/n), j = 0, 1, . . . , n− 1. Hence

t(X×Cn) = 1
mn

m∏
i=1

n−1∏
j=0

(µi(X)+2−2 cos(2πj/n)), where i+j > 1 =

1
mn

m∏
i=2

µi(X)
n−1∏
j=1

(2−2 cos(2πj/n))
m−1∏
i=1

n−1∏
j=1

(µi(X) + 2−2 cos(2πj/n)) =

t(X)t(Cn)
m−1∏
i=1

n−1∏
j=1

(4+µi(X)−4 cos2 πj
n

) = n t(X)
m−1∏
i=1

U2
n−1(

1
2

√
4 + µi(X)).

3. Harmonic maps and harmonic actions

3.1.1. Show that the natural Cn−covering of the wheel graphs
Wnk → Wk is a harmonic map. Check that Cn acts pure harmoni-
cally on Wnk.

3.1.2. Show that ”zig-zag” map of P3 onto P2 is a harmonic map.
Find branched points of this map.

3.1.3. Construct a harmonic map of tree onto a tree with one
branched point of order n.
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3.1.4. Describe all harmonic maps between trees.
Answer: unknown yet.

3.1.5. Let group G acts purely harmonically on a graph X. Then
the factor map X → X/G is harmonic map.

3.1.6. Construct a C6-regular harmonic map of a graph K2,3 onto a
segment P2.

3.1.7. Let a finite group G acts on a graph X fixing only one edge
e. Replace e by |G| parallel edges to get graph X ′. Then G acts har-
monically on X ′.

3.1.8. Construct a 3−fold uniform harmonic map that is irregular.

3.1.9. Define the monodromy group of a harmonic map. Show that
a harmonic map is regular if and only if its monodromy group is regular.
(when the notion of monodromy group is well-defined?)

4. Jacobians

4.1. Basic definitions. The notion of the Jacobian group of graph
(also known as the Picard group, critical group, sandpile group, dollar
group) was independently given by many authors ([7], [3], [4], [2]). This
is a very important algebraic invariant of a finite graph. In particular,
the order of the Picard group coincides with the number of spanning
trees for a graph. Following Baker-Norine [3] we define the the Jacobian
group of a graph as follows.

Let G be a finite, connected multigraph without loops. Let V (G) and
E(G) be the sets of vertices and edges of G, respectively. Denote by
Div(G) a free Abelian group on V (G). We refer to elements of Div(G)
as divisors on G. Each element D ∈ Div(G) can be uniquely presented
as D =

∑
x∈V (G)D(x)(x), D(x) ∈ Z. We define the degree of D by the

formula deg(D) =
∑

x∈V (G)D(x). Denote by Div0(G) the subgroup of

Div(G) consisting of divisors of degree zero.
Let f be a Z-valued function on V (G). We define the divisor of f by

the formula

div(f) =
∑

x∈V (G)

∑
xy∈E(G)

(f(x)− f(y))(x).

The divisor div(f) can be naturally identified with the graph-theoretic
Laplacian ∆f of f. Divisors of the form div(f), where f is a Z-valued
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function on V (G), are called principal divisors. Denote by Prin(G) the
group of principal divisors of G. It is easy to see that every principal
divisor has a degree zero, so that Prin(G) is a subgroup of Div0(G).

The Jacobian group (or Jacobian) of G is defined to be quotient group

Jac(G) = Div0(G)/Prin(G).

By making use of the Kirchhoff Matrix-Tree theorem [13] one can
show that Jac(G) is a finite Abelian group of order t(G), where t(G)
is number of spanning trees of G. An arbitrary finite Abelian group is
the Jacobian group of some graph.

4.2. Abel-Jacobi map. For a fixed base point x0 ∈ V (G) we define
the Abel-Jacobi map Sx0 : G→ Jac(G) by the formula Sx0(x) = [(x)−
(x0)], where [d] is an equivalence class of divisor d. If graph G is 2-edge
connected (=bridgeless) then Sx0 is an imbedding [3].

4.3. Jacobians and flows. We endow each edge of G by two possible
orientations. Since G has no loops it is well-defined procedure. Let
~E = ~E(G) be the set of oriented edges of G. For e ∈ ~E we denote
initial vertex o(e) and terminus vertex t(e), respectively. We define the
flow of e by the formula ω(e) = [t(e)− o(e)]. We note that

ω(e) = [[t(e)− x0]− [o(e)− x0]] = Sx0(t(e))− Sx0(o(e))

does not depend of the choice of initial point x0. By virtue of Lemma 1.8
in [3] (see also [2]) the Jacobian Jac(G) is an Abelian group generated

by flows ω(e), e ∈ ~E, whose defining relations are given by the two
following Kirchhoff’s laws.

(K1) The flow through each vertex of G is equal to zero. It means
that ∑

e∈ ~E,t(e)=x

ω(e) = 0 for all x ∈ V (G).

(K2) The flow along each closed orientable walk W in G is equal to
zero. That is ∑

e∈W

ω(e) = 0.

Recall that the closed orientable walk in G is a sequence of ori-
entable edges ei ∈ ~E(G), i = 1, . . . , n such that t(ei) = o(ei+1) for
i = 1, . . . , n− 1 and t(en) = o(e1).
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4.4. Smith normal form. Let A be a finite Abelian group generated
by x1, x2, . . . , xn and satisfying the system of relations

n∑
j=1

aijxj = 0, i = 1, . . . , m,

where A = {aij} is an integer m× n matrix. Set dj, j = 1, . . . , r, for
the greatest common divisor of all j × j minors of A. Then,

A ∼= Zd1 ⊕ Zd2/d1 ⊕ Zd3/d2 ⊕ · · · ⊕ Zdr/dr−1 .

The latter decomposition is known as the Smith Normal Form. See
([24], Ch. 3.22) for details.

4.5. Jacobians and Laplacians. Consider the Laplacian matrix L(G)
as a homomorphism Z|V | → Z|V |, where |V | = |V (G)| is the number of
vertices of G. Then coker(L(G)) = Z|V |/im(L(G)) is an abelian group.
For 1 ≤ i ≤ |V |, let ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Z|V |, be the i-th
standard basis, and xi be its image in coker(L(G)). It is known that
coker(L(G)) is determined by the generators x1, . . . , x|V | and the rela-
tions (x1, . . . , x|V |)L(G) = 0.

Two integral matrices A and B are equivalent (written A ∼ B) if
there are unimodular matrices P and Q such that B = PAQ. Equiv-
alently, B is obtained from A by a sequence of elementary row and
column operations: (1) the interchange of two rows or columns, (2)
the multiplication of any row or column by −1, (3) the addition of any
integer times of one row (resp. column) to another row (resp. column).

It is easy to see that A ∼ B implies that coker(A) ∼ coker(B). The
Smith normal form is a diagonal canonical form for our equivalence
relation: every n × n integral matrix A is equivalent to a unique di-
agonal matrix diag(s1(A), . . . , sn(A)), where si(A) divides si+1(A) for
i = 1, 2, . . . , n−1. The i-th diagonal entry of the Smith normal form of
A is usually called the i-th invariant factor of A. We will use the fact
that the values si(A) can also be interpreted as follows: for each i, the
product s1(A)s2(A) · · · si(A) is the greatest common divisor of all i× i
minors of A.

The classification theorem for finitely generated abelian groups as-
serts that coker(L(G)) has a direct sum decomposition

coker(L(G)) ∼= Zt1 ⊕ Zt2 ⊕ · · · ⊕ Zt|V | ,
where the nonnegative integers ti are the diagonal entries of the Smith
normal form of the relation matrix L(G), satisfying ti

∣∣ti+1, (1 ≤ i ≤
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|V |). Since G is connected, it is not hard to see that L(G) has rank
|V |− 1, and the kernel of L(G) is spanned by the vectors in Z|V | which
are constant on the vertices. It follows that t|V | = 0, t1 · · · t|V |−1 6= 0
and Zt|V | = Z. Now

coker(L(G)) = Z|V |/im(L(G)) ∼= Z⊕ Jac(G),

where
Jac(G) = Zt1 ⊕ Zt2 ⊕ · · · ⊕ Zt|V |−1

is the Jacobian group of G.

4.6. Exersises.

4.6.1. Let ϕ : X → Y be a harmonic map of graphs. Show that
induced Albanese functor ϕ∗ : Jac(X)→ Jac(Y ) is an epimorphism.

4.6.2. Let φ : X → Y be a harmonic map of graphs. Show that
induced Picard functor ϕ∗ : Jac(Y )→ Jac(X) is injective.

4.6.3. Show that Albanese functor is covariant. That is ϕ∗ ◦ ψ∗ =
(ϕ ◦ ψ)∗.

4.6.4. Show that Picard functor is contravariant. That is ϕ∗ ◦ ψ∗ =
(ψ ◦ ϕ)∗.

4.6.5. Let ϕ : X → Y be a harmonic map of degree n. Show that
ϕ∗ ◦ ϕ∗ = n · IdY .

4.6.6. Let ϕ : X → X be a graph isomorphism. Show that ϕ∗ and
ϕ∗ are automorphisms of the Jacobian Jac(X). Could ϕ be non-trivial
automorphism if ϕ∗ and ϕ∗ are trivial automorphisms.

4.6.7. Let X be a finite 2-edge-connected graph. Show that the cor-
respondence ϕ ∈ Aut (X)→ ϕ∗ ∈ Jac(X) is a group monomorphism.

4.6.8. Let X be a finite 2-edge-connected graph. Show that the cor-
respondence ϕ ∈ Aut (X)→ ϕ∗ ∈ Jac(X) is a group monomorphism.

4.6.9. Find graph X such that Aut (X) ∼= Jac(X).

4.6.10. Let Pn be a path graph on n + 1 vertices. Show that
Jac(Pn) = 0.

4.6.11. Let Cn be a cyclic graph on n vertices. Show that Jac(Cn) =
Zn.
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4.6.12. Let Kn be the complete graph on n vertices. Prove that
Jac(Kn) = Zn−2n .

4.6.13. Let Km,n be the complete bipartite graph. Prove that
Jac(Km,n) = Zn−2m ⊕ Zm−2n ⊕ Zmn.

4.6.14. Let L(4, 4) = K4 × K4 be the 4 × 4 lattice graph. Prove
that Jac(L(4, 4)) = Z5

8 ⊕ Z4
32.

4.6.15. Let Shr be the Shrikhande graph. Prove that Jac(Shr) =
Z2 ⊕ Z2

8 ⊕ Z2
16 ⊕ Z4

32.

Figure 1. Shrikhande graph on the torus

4.6.10. Construct the Abel-Jacobi map of X into Jac(X) for the
following graphs.

(i) X = Cn;
(ii) X = K4;
(iii) X = Wn, n = 4, 5;
(iv) X = Q3.

4.6.11. Let X be a finite connected graph. Denote by X the graph
obtained from X by collapsing all bridges of X to vertices. Prove
Jac(X) = Jac(X)

4.6.12. Let e be an edge of graph X such that X \ e = X1 ∪ X2

is a disjoint union of two connected graphs X1 and X2. Prove that
Jac(X) = Jac(X1)⊕ Jac(X2).

4.6.13. Let X1 and X2 be connected graphs sharing a common
vertex. Show that Jac(X1+. X2) = Jac(X1 ⊕X2).
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4.6.14. Let A = Zn1 ⊕Zn2 ⊕ . . .⊕Znr be a finite Abelian group and
X = Cn1+. Cn2+. . . .+. Cnr . Show that Jac(X) ∼= A.

4.6.15. Find Jac(X1×X2) of the Cartesian product X1×X2 of the
graphs X1 and X2. (unsolved problem)

4.6.16. Prove the isomorphism Jac(X) ∼= H1(X, R)/H1(X, Z),
where H1(X, K) is the first cohomology group of X over K.

4.6.17. Let L(X) be a Laplacian matrix of a graph X. Prove that
Jac(X) ∼= Zn1 ⊕ Zn2 ⊕ . . . ⊕ Znr , where diag(n1, n2, . . . , nr, 0) is the
Smith normal form of L(X).

4.6.18. Are there two graphs X1 and X2 with the same Laplacian
spectrum whose Jacobians are not isomorphic? Hint: consider two
strongly regular graphs with parameters (28, 12, 6, 4) the Lattice graph
L(4, 4) = K4 ×K4 and the Shrikhande graph Shr.

4.6.19. Let X and X∗ be dual planar graphs. Prove that Jac(X) =
Jac(X∗).

4.6.20.

4.6.21. [14] Show that the Jacobian of the graph Km × Pn is Zt ⊕
Zm−2mt , where t =

xn1−xn2√
m2+4m

, and x1, x2 are the two roots of the quadratic

equation x2 − (m + 2)x + 1 = 0 : x1 = m + 2 +
√
m2 + 4m, x2 =

m+ 2−
√
m2 + 4m.

4.7. Solutions.

4.6.18. Consider two graphs on Fig. 4.7. They share the Laplacian
polynomial

−384x+ 1520x2 − 2288x3 + 1715x4 − 708x5 + 164x6 − 20x7 + x8.

In the same time, Jacobian for the first graph is Z48 and for the second
Z4 ⊕ Z12.
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Figure 2. Two genus three isospectral graphs

5. Graph of groups and Bass uniformisation theory

6. Riemann-Hurwitz formula and its applications

6.1. Exersises.

6.1.1. Let G be a finite group acting on the set of directed edges
of a graph X of genus g free and without edge revising. Denote by g′

genus of the factor graph X ′ = X/G. Prove that

g − 1 = |G|(g′ − 1) +
∑

x∈V (X)

(|Gx| − 1),

where V (X) is the set of vertices of X ([3], [8]).

6.1.2. Let X be a graph of genus g and G is a finite group acting on
X without edge revising. Denote by g(X/G) genus of the factor graph
X/G. Then

g − 1 = |G|(g(X/G)− 1) +
∑

v∈V (X)

(|Gv| − 1)−
∑

e∈E(X)

(|Ge| − 1),

where V (X) is the set of vertices, E(X) is the set of edges of X, Gx

stands for the stabiliser of x ∈ V (X)∪E(X) in G and |Gx| is the order
of a stabiliser. (A. D. Mednykh, 2013).

6.1.3. Let X be a graph of genus g and G is a finite group acting
on X, possibly with edge revising. Denote by g(X/G)loop genus of the
factor graph (X/G)loop. Then

g − 1 = |G|(g(X/G)loop − 1) +
∑

v∈V (X)

(|Gv| − 1)−
∑

e∈E(X)

(|Ge| − 1),



GRAPH COVERINGS AND HARMONIC MAPS IN EXERCISES 23

where V (X) is the set of vertices, E(X) is the set of edges of X, Gx

stands for the stabiliser of x ∈ V (X)∪E(X) in G and |Gx| is the order
of a stabiliser. (A. D. Mednykh, 2013).

6.1.4. Let X be a graph of genus g and G is a finite group acting
on X, possibly with edge revising. Denote by g(X/G)tail genus of the
factor graph (X/G)tail. Then

g−1 = |G|(g(X/G)tail−1)+
∑

v∈V (X)

(|Gv|−1)−
∑

e∈E(X)

(|Ge|−1)+
∑

e∈Einv(X)

|Ge|,

where V (X) is the set of vertices, E(X) is the set of edges of X, Gx

is the stabiliser of x ∈ V (X) ∪ E(X) in G, and Einv(X) is the set of
invertibile edges of X. (A. D. Mednykh, 2013).

6.1.5. Let X be a graph of genus g and G is a finite group acting
on X, possibly with edge revising. Denote by g(X/G)free genus of the
factor graph (X/G)free. Then

g−1 = |G|(g(X/G)free−1)+
∑

v∈V (X)

(|Gv|−1)−
∑

e∈E(X)

(|Ge|−1)+
∑

e∈Einv(X)

|Ge|,

where V (X) is the set of vertices, E(X) is the set of edges of X, Gx

is the stabiliser of x ∈ V (X) ∪ E(X) in G, and Einv(X) is the set of
invertible edges of X. (A. D. Mednykh, 2013).

6.1.6. Let X be a graph of genus g and G is a finite group acting
on X harmonically, possibly with edge revising. Denote by g(X/G)free
genus of the factor graph (X/G)free. Then

g − 1 = |G|(g(X/G)free − 1) +
∑

v∈V (X)

(|Gv| − 1) + |Einv(X)|,

where V (X) is the set of vertices, E(X) is the set of edges of X, Gv

is the stabiliser of v ∈ V (X) in G, and Einv(X) is the set of invertible
edges of X [3].

6.1.7. Denote by M(g) maximum size of a finite group acting har-
monically on a graph of genus g ≥ 2. Prove the following result by
Scott Corry [8]. For any g ≥ 2 we have

4(g − 1) ≤M(g) ≤ 6(g − 1).

The upper and lower bounds are attained for infinitely many values
of g.
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6.1.8. Let X be a graph of genus g and S is a subset of vertices of
X consisting of s ≥ 1 elements. Suppose that g− 1 + s > 0 and G is a
finite group acting on X harmonically and leaving the set S invariant.
Then

|G| ≤ 2(g − 1) + 2s.

(R. Nedela, A. D. Mednykh, 2013).

6.1.9. Prove the following discrete version of the first Arakawa’s
theorem.

Let X be a graph of genus g ≥ 2 and A and B are two disjoint
subsets of vertices of X of the orders |A| ≥ |B| ≥ 1. Suppose that G is
a finite group acting harmonically on X and leaving the sets A and B
invariant. Then

|G| ≤ 3(g − 1) + |A|+ 3|B|
2

.

The upper bound is sharp and is attained for arbitrary large values of
g. (R. Nedela, A. D. Mednykh, I. A. Mednykh, 2013).

6.1.8. Prove the following discrete version of the second Arakawa’s
theorem.

Let X be a graph of genus g ≥ 2 and A,B and C are three disjoint
subsets of vertices of X of the orders |A| ≥ |B| ≥ |C| ≥ 1. Suppose
that G is a finite group acting harmonically on X and leaving the sets
A,B and C invariant. Then

|G| ≤ g − 1 + |A|+ |B|+ |C|
2

.

The upper bound is sharp and is attained for arbitrary large values
of g. (R. Nedela, A. D. Mednykh, I. A. Mednykh, 2013).

6.1.9. Prove the following discrete version of the Wiman’s theorem.
Let X be a graph of genus g ≥ 2 and ZN is a cyclic group acting

harmonically on X. Then N ≤ 2g+ 2. The upper bound N = 2g+ 2 is
attained for any even g. In this case, the signature of orbifold X/ZN is
(0; 2, g + 1), that is X/ZN is a tree with two branch points of order 2
and g + 1 respectively. (A. D. Mednykh, I. A. Mednykh, 2013).

7. Miscellaneous questions of graph theory

7.1. Exersises.

7.1.1. Prove the following discrete version of R. D. M. Accola for-
mula.
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Let X be a finite graph of genus g. Suppose X admits a finite
group of harmonic automorphisms, G0, where G0 = ∪si=1Gi, Gi ∩Gj =
〈1〉, i, j > 0 is a group with a partition. Let the order of Gi be ni, let
Xi = X/Gi, and let gi, be the genus of Xi, for i = 0, 1, . . . , s. Then

(s− 1)g + n0g0 =
s∑
i=1

nigi.

7.1.2. Let Dn = 〈R, V ;Rn = V 2 = (RV )2 = 1〉 be the dihedral
group of order 2n. Suppose that Dn acts harmonically on a finite graph
X. Denote by g(X) the genus of X. Then

g(X) + 2g(X/Dn) = g(X/〈R〉) + g(X/〈V 〉) + g(X/〈RV 〉).

7.1.3. (Uniqueness of hyperelliptic involution). Let X be a graph
of genus g ≥ 2 and τi, i = 1, 2 are hyperelliptic involutions on X. That
is τ1 and τ2 act harmonically on X and the factor-graphs X/〈τ1〉 and
X/〈τ2〉 are trees. Prove that τ1 = τ2.

How many hyperelliptic involutions admit a tree and a flower? By
definition, a tree and and a flower are graphs of genera zero and one
respectively.

7.1.4. (Uniqueness of γ-hyperelliptic involution). Let γ be a non-
negative integer. Let X be a graph of genus g so that g > 4γ + 1.
Suppose τ is an automorphism of X of order two so that the genus of
X/〈τ〉 is g. Prove that these properties define τ uniquely and 〈τ〉 is
central in the full group of automorphisms of X.

7.1.5 Let gi and g2 be nonnegative integers. Let X be a graph
of genus g so that 2g ≥ 3g1 + 3g2 + 3. Let X admits two distinct
automorphisms A1 and A2, both of period two so that the genus of
X/〈Ai〉 is gi. Then, A1 and A2 commute.

7.2. Solutions.

7.1.1 For the coverings X → X/G0 and X → X/Gi the Riemann-
Hurwitz formula gives

(1) g − 1 = n0(g0 − 1) + r0 and g − 1 = ni(gi − 1) + ri,

where r0, ri are the ramifications of the coverings under consideration.
Let v ∈ V (X) be a branch point of the covering X → X/G0. For any
subgroup H of the group G0 denote by Hv the stabiliser of v in H and
by |Hv| the order of this stabiliser. Then the contribution of v to the
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ramifications r0 and ri is given by |Gv
0| − 1 and |Gv

i | − 1, respectively.
More precisely, we have

(2) r0 =
∑

v∈V (X)

(|Gv
0| − 1) and ri =

∑
v∈V (X)

(|Gv
i | − 1).

Since G0 is a group with the partition {G1, G2, . . . , Gs} we obtain

|G0| − 1 =
∑
1≤i≤s

(|Gi| − 1),

or

n0 − 1 =
∑
1≤i≤s

(ni − 1).(3)

In a similar way, since the stabiliser Gv
0 is a group with the partition

{Gv
1, G

v
2, . . . , G

v
s} we have

|Gv
0| − 1 =

∑
1≤i≤s

(|Gv
i | − 1).

Summing the latter equality through all v ∈ V (X), from (2) we obtain

(4) r0 =
∑
1≤i≤s

ri.

Now substitute equations (1) into (4).

(g − 1)− n0(g0 − 1) =
∑
1≤i≤s

[(g − 1)− ni(gi − 1)].(5)

Substracting (3) from (5) we obtain the result.

7.1.2 By the Accola’s formula (7.1.1) we have

ng(X) + 2ng(X/Dn) = ng(X/〈R〉) + 2
n−1∑
i=0

g(X/〈RiV 〉).

If n is odd, then all subgroups 〈RiV 〉 are conjugate, and hence
g(X/〈RiV 〉) = g(X/〈V 〉) for i = 1, 2, . . . , n− 1.

If n is even, then 〈RiV 〉) and 〈RjV 〉) are conjugate if and only i ≡

mod 2. Thus we have
n−1∑
i=0

g(X/〈RiV 〉) is equal to ng(X/〈V 〉) for odd

n, and n
2
(g(X/〈V 〉) + g(X/〈RV 〉)) for even n. Therefore we obtain the

desired result.

7.1.3 See the proof of (7.1.4) for the case γ = 0.
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7.1.4 Suppose τ1 and τ2 are two distinct automorphisms of X with
the properties of τ . Then, τ1 and τ2 generate a dihedral group, Dn, of
order 2n. We set R = τ1τ2 and V = τ2. Then the Accola’s formula gives

g + 2g(X/Dn) = 2g + g(X/〈R〉).

From the Riemann-Hurwitz formula for graphs applied to X → X/〈R〉
we have

g − 1 = n(g(X/〈R〉)− 1) + r,

where n is the order of R. But n ≥ 2 since τ1 and τ2 are distinct and
r > 0. So

g − 1 ≥ 2(g(X/〈R〉)− 1) or 2g(X/〈R〉) ≤ g + 1.

Since g(X/Dn) ≥ 0 we have

2g ≤ 2g + 4g(X/Dn) = 4γ + 2g(X/〈R〉) ≤ 4γ + g + 1,

or

g ≤ 4γ + 1.

This contradiction shows that τ is unique.
Let t be another automorphism of X. Then, tτ t−1 has the same

properties as τ. Thus τ = tτ t−1, and the proof is complete.

7.1.5 Setting g0 = g(X/〈A1, A2〉) and g3 = g(X/〈A1A2〉) by the
Accola’s formula we have

g + 2g0 = g1 + g2 + g3.

Let the product A1A2 have order n. We wish to show that n is two, so
suppose n ≥ 3. The Riemann-Hurwitz formula for X → X/〈A1A2〉 is

g − 1 = n(g0 − 1) + r.

Hence, g − 1 ≥ 3(g0 − 1) or 3g0 ≤ g + 2.
Since, g0 ≥ 0 we have

3g ≤ 3g + 6g0 = 3g1 + 3g2 + 3g3

or

3g ≤ 3g1 + 3g2 + 2 + g.

This contradicts the hypothesis and thus n = 2. Then 〈A1, A2〉 is the
dihedral group D2 of order four and the elements A1 and A2 commute.
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